このサイトはお使いのブラウザでは正常に動作しません。Google Chromeなど、別のブラウザを使用してください。

二次方程式x^2-2x+3=0の2つの解を‪α‬、βとするとき、2数‪α‬-2、β-2を解とする二次方程式を1つつくれ。

    小田原 凜花 (id: 2004) (2023年5月8日21:09)
    0 0
    この問題が分からないので教えてください 答えはx^2+2x+3=0

    回答

    くさぼうぼう : (id: 1236) (2023年5月8日22:15)
    0 0
    こんばんは。初めての方ですね。よろしく! 2回目以降は、質問はタイトルではなく(笑)本文に書いてくださいね! 解と係数の問題ですね。 解と係数の関係よりα+β=2,αβ=3であることがわかっていますね。 さて、これから求めようとしている2次方程式の解をちょっとp,qとしておきます。 和p+qや積pqの値が分かれば、その2次方程式が作れます。 p+q=S,pq=Tだったら、解と係数の関係より$x^2-Sx+T=0$ ですよね。 じゃ、S,Tを求めてみましょう。 p+q=(αー2)+(βー2)=α+βー4=2-4=ー2 pq=(αー2)・(βー2)=αβー2(α+β)+4=3-4+4=3 S=-2,T=3とわかったので、求める2次方程式は $x^2+2x+3=0$ ですね。 解と係数の関係は大事な道具ですから、使い方をマスターしましょう。 これで大丈夫ですか? これを読んだら、わかったとか、まだこのへんがわからないとか、コメント欄に返事を書いてください。それがないと、せっかく書いたものを読んでくれたのかどうか、書いたものが役に立ったのかどうか、こちらではわかりませんので。よろしく。2回目以降も同様です。
    小田原 凜花 (id: 2004) (2023年5月9日1:34)
    0 0

    すみません 間違えてタイトルに書いてしまいました笑 丁寧に説明して下さりありがとうこざいました 理解出来ました!

    回答する