このサイトはお使いのブラウザでは正常に動作しません。Google Chromeなど、別のブラウザを使用してください。
(3)が答えをみても分かりません
(3)を、詳しく解説していただくと助かります。よろしくお願いいたしますm(__)m
ちなみに答えはa≦9
回答
大介 重松 さん、こんにちは。初めての方ですね。よろしく。
じゃ、解説を書いてみますね。
まず、「pがqであるための必要条件」は大丈夫ですか?
「pならばq」が成り立つとき、pはqの十分条件です。
「qならばp」が成り立つとき、pはqの必要条件ですね。
だからこの問題では、言い換えると
「整数xは集合Bの要素であるならば、整数xは集合Aの要素である」が成り立つようなaの範囲を求めよ、です。
さらに具体的に書けば(a≧0の場合をまず考えます)、
「xが2と6の間にある整数ならば、xは±√aの外側にある」が成り立つようなaの範囲を求めよ、ということです。
もっと具体的には
「整数3,4,5が±√aの外側にある」が成り立つようなaの範囲を求めよ、ということです。
ここまでは大丈夫ですか?
3,4,5は正の数ですから、これらが+√aより大きいというのがaの満たすべき条件になります。
A,Bを表す不等式の等号があるかないかに注意して、最も小さい3が+√aより大きいか等しければいいですね。
よって3≧√aより0≦a≦9となります。
a<0の時は集合Aはすべての実数になるので、もちろん「整数xは集合Bの要素(実は3,4,5)であるならば、整数xは集合A(実は実数全体)の要素である」は成り立ちます。
よって、求めるaの範囲は a≦9 となりますよ。
これで大丈夫ですか?ここでは会話型を目指しています。これを読んだら、わかったとか、まだこのへんがわからないから説明してほしいとか、コメント欄に何か返事を書いてください。返事がないと、せっかく書いたものを読んでくれたのかどうか、書いたものが役に立ったのかどうか、こちらではわからないのです。コメントよろしく。