このサイトはお使いのブラウザでは正常に動作しません。Google Chromeなど、別のブラウザを使用してください。
高次偏導関数
自分でやってみたのですが、答えが合いませんでした。
答えは0です。
回答
ふわ ふわな さん、こんにちは。初めての方ですね。よろしく。
あなたのノートを拝見しました。
まだ最後まで見ていませんが、第1次偏導関数で間違っているようです。
分母に出てくる $\dfrac{x^2}{y^2}$ は $\dfrac{y^2}{x^2}$ では?
分子も変です。
$\dfrac{\partial f}{\partial x}$ 、$\dfrac{\partial f}{\partial y}$ ともに符号が逆です。
$\dfrac{\partial f}{\partial x}$ にはマイナスがつき、$\dfrac{\partial f}{\partial y}$ にはマイナスがつきません。
とりあえず、間違いを見つけたので、回答しました。
この先を見ますね。あなたもまずはそこを直して再計算してみてください。
===========================
追記
あれ?第2次偏導関数の微分計算がおかしいですね。
商の微分法を使っていますが、ただしく当てはめられていないようです。
また、分かっていらっしゃるとは思いますが、xで偏微分するときはyは定数扱い、yで偏微分するときはxは定数扱いですよ。
ぜひ、計算に再挑戦して、ダメならまたそこまでのノートを見せてください。必要に応じて偏微分の途中の式も書きますので。
なにか伝えることがあればコメント欄を使ってください。
送りました お願いします
やってみたら出来ました! ありがとうございます!
そうですか、それならよかったです。またどうぞ。