このサイトはお使いのブラウザでは正常に動作しません。Google Chromeなど、別のブラウザを使用してください。

ベクトル内積

    ベェディヴィエール (id: 2536) (2024年9月2日19:58)
    0 0
    問2.2の問題が分かりません。 角度が分からないのでどうやって求めるんですか? 答えは (1)10 (2)6

    IMG_20240902_191258.jpg

    回答

    くさぼうぼう : (id: 1236) (2024年9月2日20:55)
    0 0
    ベェディヴィエール さん、こんばんは。 たしかに角度の情報はないですね。 でも、内積を知るには、ベクトルの大きさとなす角のコサインが分かればいいのですよね。 その図から三平方の定理を使えば、どの長さもわかりますね。 OA,OB,ABの長さがわかれば、∠BOAのコサインはわかるじゃないですか! マス目の右下をCとすると、cos∠BOA=cos∠BOC=$\dfrac{OC}{OB}$ だし、 cos∠BAC=$\dfrac{AC}{AB}$ ですね。 これで大丈夫ですか? もっとも、内積を成分から計算するのも学習済みなら、それぞれのベクトルの成分表示は図から分かるので、角度についての情報は無くても内積は計算できますよ。 コメント欄に何か返事を書いてください。よろしく。
    ベェディヴィエール (id: 2536) (2024年9月2日22:50)
    0 0

    理解できました! ありがとうございます

    くさぼうぼう : (id: 1236) (2024年9月3日9:30)
    0 0

    それならよかったです。成分で計算するほうが洛ですね。

    ベェディヴィエール (id: 2536) (2024年9月4日18:28)
    0 0

    (2)の角度は∠BAOじゃないんですか? cos∠BACだと角度がおかしい気がします

    くさぼうぼう : (id: 1236) (2024年9月4日18:38)
    0 0

    なるほど。内積に使う角度は2つのベクトルのなす角で、それは2つのベクトルの始点をそろえて測りますよ!ベクトルOAの始点OをAに移すように平行移動して、その時の2つのベクトルの作る角を使います。ですから、角は∠BACです。もしベクトルABとベクトルAOの内積なら始点が一致していますので∠BAOを使いますが。 これで大丈夫ですか?

    ベェディヴィエール (id: 2536) (2024年9月4日19:08)
    0 0

    できました! ありがとうございます!

    くさぼうぼう : (id: 1236) (2024年9月4日20:21)
    0 0

    どういたしまして。またどうぞ!

    回答する